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Abstract. The two-neutrino positron double-beta decay of 106Cd for the 0+ → 0+ transition has been
studied in the Hartree-Fock-Bogoliubov model in conjunction with the summation method. In the first
step, the reliability of the intrinsic wave functions of 106Cd and 106Pd nuclei has been tested by comparing
the theoretically calculated results for yrast spectra, reduced B(E2:0+ → 2+) transition probabilities,
quadrupole moments Q(2+) and gyromagnetic factors g(2+) with the available experimental data. In the
second step, the nuclear transition matrix element M2ν and the half-life T 2ν1/2 for the 0+ → 0+ transition
have been calculated with these wave functions. Moreover, we have studied the effect of deformation on
the nuclear transition matrix element M2ν .

PACS. 23.40.Hc Relation with nuclear matrix elements and nuclear structure – 21.60.Jz Hartree-Fock
and random-phase approximations – 23.20.-g Electromagnetic transitions – 27.60.+j 90 ≤ A ≤ 149

1 Introduction

The nuclear double-beta (ββ) decay, one of the rarest pro-
cesses of Nature, is characterized by two modes. They are
the two-neutrino double-beta (2ν ββ) decay and the neu-
trinoless double-beta (0ν ββ) decay. These modes can be
classified into double-electron (β−β−) emission, double-
positron (β+β+) emission, electron-positron conversion
(β+EC) and double electron capture (ECEC). The latter
three processes are energetically competing and we shall
refer to them as positron double-beta decay (e+DBD)
modes. If the 0ν ββ decay were observed, the e+DBD
processes would play a crucial role in discriminating the
finer issues like dominance of Majorana neutrino mass or
the right-handed current. The theoretical implications and
experimental aspects of e+DBD modes have been widely
reviewed over the past years [1–8].

The half-lives of many β−β− emitters are shorter, com-
pared with the other modes, due to a larger available phase
space. For this reason they were the natural choice for the
experimental observation to start with. However, the ex-
perimental sensitivity of the β−β− decay mode gets lim-
ited because of the presence of electron background. On
the other hand, from the experimental point of view, the
e+DBD modes are relatively easier to be separated from
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the background contaminations. Moreover, the e+DBD
modes are also attractive due to the possibility to detect
the coincidence signals from four γ-rays, two γ-rays and
one γ-ray for β+β+, β+EC, ECEC modes, respectively.
The Q value for the 2ν ECEC mode can be large enough
(up to 2.8 MeV) but the detection of the 0+ → 0+ tran-
sition is difficult since only X-rays are emitted.

There have been very few experimental attempts for
determining the half-lives of 2ν e+DBD modes even for
the best candidate 106Cd [9–16] but one of the latest ob-
servations is very close to the predictions for the β+EC
mode [14]. With improved sensitivity in detection systems
of the planned bigger Osaka-OTO experiment [17], it is
expected that 2ν e+DBD modes will be in an observable
range in the near future [18]. Hence, a timely reliable pre-
diction of the half-life of 106Cd decay will be helpful in
designing of an experimental set-up and analysis of data.

Rosen and Primakoff were the first to study the 2ν
e+DBD modes theoretically [2]. Later on, Kim and Ku-
bodera estimated the half-lives of all the three modes with
modified nuclear transition matrix elements (NTMEs)
and non-relativistic phase space factors [19]. Abad et al.
performed similar calculations using relativistic Coulomb
wave functions [20]. In the meantime, the QRPA emerged
as the most successful model in explaining the quench-
ing of NTMEs by incorporating the particle-particle
part of the effective nucleon-nucleon interaction in the
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proton-neutron channel and the observed T 2ν
1/2 of sev-

eral 2ν ββ decay emitters were reproduced success-
fully [6]. Staudt et al. used the QRPA model for evaluating
2ν β+β+ decay transition matrix elements [21]. Subse-
quently, the 2ν e+DBD modes were studied in QRPA and
its extensions [13,22–26], SU(4)στ [27] and SSDH [28].

A vast amount of data concerning the level energies
as well as electromagnetic properties have been com-
piled through experimental studies involving in-beam γ-
ray spectroscopy over the past years. Hence, there is no
need to study the ββ decay as an isolated nuclear pro-
cess. The availability of data permits a rigorous and de-
tailed critique of the ingredients of the microscopic frame-
work that seeks to provide a description of nuclear ββ
decay. However, most of the calculations of e+DBD tran-
sition matrix elements performed so far but for the work
of Barabash et al. [13] and Suhonen et al. [25] do not fully
satisfy this criterion.

The nuclear structure in the mass region A = 100 of-
fers a nice example of shape transition, i.e. a sudden onset
of deformation at neutron number N = 60. The nuclei are
soft vibrators for N < 60 and quasirotors for N > 60.
The nuclei with neutron number N = 60 are transitional
nuclei. Hence, it is expected that deformation degrees of
freedom will play some crucial role in the structure of
106Pd and 106Cd nuclei. Further, the pairing of like nu-
cleons plays an important role in all ββ decay emitters,
which are even-Z and even-N nuclei. Hence, it is desir-
able to have a framework for the study of ββ decay in
which the pairing and deformation degree of freedom are
treated on equal footing in its formalism. The Projected
Hartree-Fock-Bogoliubov (PHFB) model is a very rea-
sonable choice which fulfills these requirements. The suc-
cessful study of shape transition vis-à-vis electromagnetic
properties of various nuclei in the PHFB model [29–32] us-
ing pairing–plus–quadrupole-quadrupole (PPQQ) [33] in-
teraction motivates us to apply the HFB wave functions
to study the 2ν e+DBD modes of 106Cd.

Further, it has been shown that there exists an in-
verse correlation between the Gamow-Teller strength and
the quadrupole moment [34,35]. It is well known that the
pairing degree of freedom accounts for the preference of
nuclei to have a spherical form, whereas the quadrupole-
quadrupole (QQ) interaction increases the collectivity in
the nuclear intrinsic wave functions and makes the nucleus
deformed. Hence, the PHFB model using the PPQQ inter-
action is a convenient choice to examine the explicit role
of deformation on NTME M2ν .

Our aim is to study the 2ν e+DBD transition of
106Cd→ 106Pd for the 0+ → 0+ transition together with
other observed nuclear properties using the PHFB model.
In the PHFB model, the NTME M2ν is usually calculated
using the closure approximation. In the present calcula-
tion, we have avoided the closure approximation by mak-
ing use of the summation method [36]. In sect. 2, we briefly
outline the theoretical framework. In sect. 3, the reliability
of the wave functions is first established by calculating the
yrast spectra, reduced B(E2:0+ → 2+) transition proba-
bilities, static quadrupole moments Q(2+) and g-factors

g(2+) of both parent 106Cd and daughter 106Pd nuclei
and by comparing them with the available experimental
data. The half-lives of 2ν e+DBD modes for the 0+ → 0+

transition have been given as prediction. The role of defor-
mation on NTME M2ν has also been studied. We present
the conclusions in sect. 4.

2 Theoretical framework

The theoretical formalism to calculate the half-lives of 2ν
e+DBD modes has been given by Doi et al. [5] and Suho-
nen et al [6]. Hence, we briefly outline the steps of the
above derivations for clarity in notation following Doi et
al. [5]. Details of the mathematical expressions used to
calculate electromagnetic properties are given by Dixit et
al. [37].

The half-life of the 2ν e+DBD mode for the 0+ → 0+

transition is given by

[

T 2ν
1/2(0

+ → 0+)
]−1

= G2ν |M2ν |
2
, (1)

where the integrated kinematical factor G2ν can be calcu-
lated with good accuracy [5] and the NTME M2ν is given
by

M2ν =
∑

N

〈0+F ||στ
−||1+N 〉〈1

+
N ||στ

−||0+I 〉

EN − (EI +EF )/2
(2)

=
∑

N

〈0+F ||στ
−||1+N 〉〈1

+
N ||στ

−||0+I 〉

E0 + EN − EI
, (3)

where

E0 =
1

2
(EI − EF )

=
1

2
Qββ +me =

1

2
W0 . (4)

Here, W0 is the total energy released and is given by

W0 = EI − EF , (5)

W0(β
+β+) = Qβ+β+ + 2me , (6)

W0(β
+EC) = Qβ+EC + eb , (7)

W0(ECEC) = QECEC − 2me + eb1 + eb2 . (8)

The summation over intermediate states can be com-
pleted using the summation method [36] and the M2ν can
be written as

M2ν =
1

E0

〈

0+F

∣

∣

∣

∣

∣

∑

m

(−1)mΓ−mFm

∣

∣

∣

∣

∣

0+I

〉

, (9)

where the Gamow-Teller (GT) operator Γm is given by

Γm =
∑

s

σmsτ
−
s (10)

and

Fm =
∞
∑

λ=0

(−1)λ

Eλ
0

DλΓm (11)
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with

DλΓm = [H, [H, . . . , [H,Γm] . . .]]
(λ times)

. (12)

In the present work, we use a Hamiltonian with PPQQ
interaction type [33] of the effective two-body interaction.
Explicitly, the Hamiltonian is written as

H = Hsp + V (P ) + χqqV (QQ) , (13)

where Hsp denotes the single-particle Hamiltonian. The
pairing part of the effective two-body interaction V (P ) is
written as

V (P ) = −

(

G

4

)

∑

αβ

(−1)jα+jβ−mα−mβa†αa
†
ᾱaβ̄aβ , (14)

where α denotes the quantum numbers (nljm). The state
ᾱ is the same as α but with the sign of m reversed. The
QQ part of the effective interaction V (QQ) is given by

V (QQ)= −
(χ

2

)

∑

αβγδ

∑

µ

(−1)µ〈α|q2µ|γ〉〈β|q
2
−µ|δ〉a

†
αa

†
βaδaγ ,

(15)
where

q2µ =

(

16π

5

)1/2

r2Y 2
µ (θ, φ) . (16)

The χqq is an arbitrary parameter and the final results
are obtained by setting the χqq = 1. The purpose of intro-
ducing χqq is to study the role of deformation by varying
the strength of the QQ interaction.

When the GT operator commutes with the effective
two-body interaction, eq. (12) can be further simplified to

M2ν =
∑

π,ν

〈0+F ||σ · στ
−τ−||0+I 〉

E0 + ε(nν , lν , jν)− ε(nπ, lπ, jπ)
. (17)

In the case of the pseudo-SU(3) model [38–40], the GT
operator commutes with the two-body interaction and the
energy denominator is a well-defined quantity without any
free parameter. It has been evaluated exactly for the 2ν
β−β− [38,39] and 2ν ECEC modes [40] in the context of
the pseudo-SU(3) scheme. However, in the present case,
the model Hamiltonian is not isospin symmetric. Hence,
the energy denominator is not as simple as in eq. (17). But
the violation of isospin symmetry for the QQ part of our
model Hamiltonian is negligible, as will be evident from
the parameters of the two-body interaction given later.
And the violation of isospin symmetry for the pairing part
of the two-body interaction is presumably small. Under
these assumptions, the expression to calculate the NTME
M2ν of the e+DBD modes for the 0+ → 0+ transition in
the PHFB model is obtained as follows.

The essential idea behind the HFB theory is to trans-
form particle coordinates to quasiparticle coordinates
through a general Bogoliubov transformation such that
the quasiparticles are relatively weakly interacting. Essen-
tially, the Hamiltonian H is expressed as

H = E0 +Hqp +Hqp-int (18)

where E0 is the energy of the quasiparticle vacuum, Hqp

is the elementary quasiparticle excitations and Hqp-int
is a weak interaction between the quasiparticles. In the
HFB theory, the interaction between the quasiparticles
is usually neglected and the Hamiltonian H is approxi-
mated by an independent quasiparticle Hamiltonian. In
the time-dependent HFB (TDHFB) model or the quasi-
particle random phase approximation (QRPA), some ef-
fects of quasiparticle interaction can be included. The ax-
ially symmetric intrinsic HFB state with K = 0 can be
written as

|Φ0〉 =
∏

im

(uim + vimb
†
imb

†
im̄)|0〉 , (19)

where the creation operators b†im and b†im̄ are given by

b†im =
∑

α

Ciα,ma
†
αm and

b†im̄ =
∑

α

(−1)l+j−mCiα,ma
†
α,−m . (20)

Using the standard projection technique, a state with good
angular momentum J is obtained from the HFB intrinsic
state through the following relation:

|ΨJ
MK〉 = P J

MK |ΦK〉

=

[

(2J + 1)

8π2

]
∫

DJ
MK(Ω)R(Ω)|ΦK〉dΩ , (21)

where R(Ω) and DJ
MK(Ω) are the rotation operator and

the rotation matrix, respectively.
Finally, one obtains the following expression for the

NTMEs of the e+DBD modes:

M2ν =
∑

π,ν

〈Ψ
Jf=0
00 ||σ · στ−τ−||ΨJi=0

00 〉

E0 + ε(nν , lν , jν)− ε(nπ, lπ, jπ)

= [n
Jf=0
Z−2,N+2n

Ji=0
Z,N ]−1/2

π
∫

0

n(Z,N),(Z−2,N+2)(θ)

×
∑

αβγδ

〈αβ |σ1 · σ2τ
−τ−| γδ〉

E0 + εα(nν , lν , jν)− εγ(nπ, lπ, jπ)

×
∑

εη

[(

1 + F
(ν)
Z,N (θ)f

(ν)∗
Z−2,N+2

)]−1

εα
(f

(ν)∗
Z−2,N+2)εβ

×
[(

1 + F
(π)
Z,N (θ)f

(π)∗
Z−2,N+2

)]−1

γη
(F

(π)∗
Z,N )ηδ sin θdθ ,

(22)

where

nJ =

π
∫

0

{det[1 + F (π)(θ)f (π)†]}1/2

×{det[1 + F (ν)(θ)f (ν)†]}1/2dJ00(θ) sin(θ)dθ (23)

and

n(Z,N),(Z−2,N+2)(θ) = {det[1 + F
(π)
Z,N (θ)f

(π)†
Z−2,N+2]}

1/2

×{det[1 + F
(ν)
Z,N (θ)f

(ν)†
Z−2,N+2]}

1/2 (24)
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Table 1. Variation in intrinsic quadrupole moment
〈

Q2
0

〉

and excitation energies (in MeV) of Jπ = 2+, 4+, and 6+ yrast states

of 106Cd and 106Pd nuclei with change in χpn, keeping fixed Gp = 30/A MeV, Gn = 20/A MeV, χpp = χnn = 0.0105 MeV b−4

and ε(0h11/2) = 8.6 MeV.

Nucleus Theo. Expt. [46]

χpn = 0.0142 0.0145 0.0148 0.0151 0.0154
106Cd

〈

Q2
0

〉

43.3772 44.7355 46.0289 47.3807 49.0039
E2+ 0.7749 0.7339 0.6797 0.6220 0.5869 0.6327

E4+ 1.9024 1.8728 1.8022 1.7129 1.6690 1.4939
E6+ 3.2993 3.3029 3.2389 3.1411 3.1089 2.4918

106Pd
〈

Q2
0

〉

51.4360 52.4295 53.4325 54.2709 55.1674
E2+ 0.5524 0.5036 0.4819 0.4500 0.4415 0.5119

E4+ 1.5706 1.4668 1.4269 1.3554 1.3435 1.2292
E6+ 2.8526 2.7089 2.6655 2.5652 2.5620 2.0766

with

[FZ,N (θ)]αβ =
∑

m′

αm
′

β

djα
mα,m

′

α

(θ)d
jβ

mβ ,m
′

β

(θ)fjαm′

α,jβm
′

β

(25)
and

[fZ,N ]αβ =
∑

i

Cijα,mα
Cijβ ,mβ

(vimα
/uimα

) δmα,−mβ
.

(26)
Here π (ν) stands for the proton (neutron) of nuclei in-
volved in 2ν e+DBD. The results of PHFB calculations
which are summarized by the amplitudes (uim, vim) and
the expansion coefficients Cij,m are used to set up the ma-
trices for [FZ,N (θ)]αβ and [fZ,N ]αβ given by eqs. (25) and
(26), respectively. Finally, the required NTME M2ν is cal-
culated in a straightforward manner using eq. (22) with
20-point Gaussian quadrature in the range (0, π).

3 Results and discussions

The model space, single-particle energies (SPEs) and two-
body interactions are the same as our earlier calculation
on the 2ν ββ decay of 100Mo for the 0+ → 0+ transi-
tion [37]. We include a brief discussion of them in the fol-
lowing for convenience. We have treated the doubly even
nucleus 76Sr (N = Z = 38) as an inert core with the
valence space spanned by the orbits 1p1/2, 2s1/2, 1d3/2,
1d5/2, 0g7/2, 0g9/2 and 0h11/2 for protons and neutrons.
The orbit 1p1/2 has been included in the valence space to
examine the role of the Z = 40 proton core vis-à-vis the
onset of deformation in the highly neutron-rich isotopes.

The set of single-particle energies (SPEs) used here is
(in MeV) ε(1p1/2) = −0.8, ε(0g9/2) = 0.0, ε(1d5/2) = 5.4,
ε(2s1/2) = 6.4, ε(1d3/2) = 7.9, ε(0g7/2) = 8.4 and
ε(0h11/2) = 8.6 for proton and neutrons. This set of SPEs
but for the ε(0h11/2), which is slightly lowered, has been
employed in a number of successful shell model [41,42] as
well as variational-model [29–32] calculations for nuclear
properties in the mass region A = 100. The strengths
of the pairing interaction are fixed through the relations
Gp = 30/A MeV and Gn = 20/A MeV, which are the

same used by Heestand et al. [43] to explain the exper-
imental g(2+) data of some even-even Ge, Se, Mo, Ru,
Pd, Cd and Te isotopes in Greiner’s collective model [44].
The strengths of the like-particle components of the QQ
interaction are taken as: χpp = χnn = 0.0105 MeV b−4,
where b is the oscillator parameter. The strength of the
proton-neutron (pn) component of theQQ interaction χpn

is varied so as to reproduce the experimentally observed
excitation energy of the 2+ state E2+ of 106Cd and 106Pd
as closely as possible. The χpn has been fixed to be 0.0151
and 0.0145 MeV b−4 for 106Cd and 106Pd, respectively.
Thus, for a given model space, SPEs, Gp, Gn and χpp,
we have fixed χpn through the experimentally available
energy spectra. These values for the strength of the QQ
interaction are comparable to those suggested by Arima
on the basis of an empirical analysis of the effective two-
body interactions [45].

We have varied the χpn to obtain the yrast spectra
of 106Cd and 106Pd in optimum agreement with experi-
mental results [46]. We have taken the theoretical spec-
tra to be the optimum if the excitation energy of the 2+

state E2+ is reproduced as closely as possible in com-
parison to the experimental results. Theoretically calcu-
lated intrinsic quadrupole moments

〈

Q2
0

〉

and yrast en-

ergies for the E2+ -to-E6+ levels of 106Cd and 106Pd for
χpn = 0.0142 to 0.0154 are presented in table 1. In
the case of 106Cd,

〈

Q2
0

〉

increases by 5.6267 units and
E2+ decreases by 0.1880 MeV as χpn is varied from
0.0142 to 0.0154 MeV b−4. For the same variation in
χpn,

〈

Q2
0

〉

increases by 3.7314 units and E2+ decreases

by 0.1109 MeV in the case of 106Pd. This observed inverse
correlation between

〈

Q2
0

〉

and E2+ is understandable as
there is an enhancement in the collectivity of the intrin-
sic state with the increase of |χpn|, E2+ decreases. This
is known as Grodzins’s rule [47]. The theoretically cal-
culated E2+ for 106Cd is 0.6220 MeV corresponding to
χpn = 0.0151 MeV b−4 in comparison to the experimen-
tally observed value 0.6327 MeV. In case of 106Pd, the
theoretically calculated E2+ for χpn = 0.0145 MeV b−4

is 0.5036 MeV in comparison to the observed value of
0.5119 MeV. All these input parameters are kept fixed
for the calculation of spectroscopic properties as well as
the NTMEs discussed below.
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Table 2. Comparison of the calculated and experimentally observed reduced transition probabilities B(E2 : 0+ → 2+), static
quadrupole moments Q(2+) and g-factors g(2+). Here B(E2) and Q(2+) are calculated in units of e2 b2 and e b, respectively,
for effective charge ep = 1 + eeff and en = eeff . g(2

+) has been calculated in units of nuclear magneton for gπl = 1.0, gνl = 0.0
and gπs = gνs = 0.60. Corresponding references for experimentally observed values are given in parentheses.

Nucleus B(E2:0+ → 2+) Q(2+) g(2+)

Theo. Expt. [48] Theo. Expt. [49] Theo. Expt. [49]
eeff eeff

0.40 0.50 0.60 0.40 0.50 0.60
106Cd 0.334 0.426 0.531 0.410±0.020 −0.52 −0.59 −0.66 −0.28±0.08 0.370 0.40±0.10

0.386±0.05
106Pd 0.407 0.520 0.657 0.610±0.090 −0.58 −0.65 −0.73 −0.56±0.08 0.466 0.398±0.021

0.656±0.035 −0.51±0.08 0.30±0.06

Table 3. Experimental limits on half-lives T 2ν1/2(0
+ → 0+), theoretically calculated M2ν and corresponding T 2ν1/2(0

+ → 0+) for

the 2ν β+β+, 2νβ+EC and 2ν ECEC modes of 106Cd. The numbers corresponding to a) and b) are calculated for gA = 1.261
and 1.0, respectively.

Decay mode Experiment Theory

Ref. T 2ν1/2 (y) Ref. Models |M2ν | T 2ν1/2 (y)

β+β+ [15] > 5.0× 1018 Present PHFB 0.081 a) 307.58×10
25

[14] > 2.4× 1020∗∗ b) 777.71×10
25

[13] > 1.0× 1019∗ [26] SQRPA(l.b.) 0.61 a) 5.38×1025

[12] > 9.2× 1017 b) 13.60×1025

[10] > 5.0× 1017 SQRPA(s.b.) 0.57 a) 6.16×1025

[9] > 2.6× 1017∗ b) 15.58×1025

[25] QRPA(WS) 0.166 a) 72.71×1025

b) 183.84×1025

QRPA(AWS) 0.722 a) 3.84×1025

b) 9.72×1025

[13] QRPA(WS) 0.840 a) 2.84×1025

b) 7.18×1025

QRPA(AWS) 0.780 a) 3.29×1025

b) 8.33×1025

[23] QRPA 0.218 a) 42.2×1025

b) 106.6×1025

[21] QRPA 4.94×1025

The calculated as well as the experimentally observed
values of the reduced B(E2:0+ → 2+) transition probabil-
ities, static quadrupole moments Q(2+), and the gyromag-
netic factors g(2+) have been presented in table 2. We have
calculated B(E2) values for effective charges eeff = 0.40,
0.50, and 0.60, which are displayed in columns 2 to 4,
respectively. The experimentally observed values are dis-
played in column 5. It is noticed that the calculated and
the observed B(E2) values [48] are in excellent agreement
for eeff = 0.5. The theoretically calculated Q(2+) are tab-
ulated in columns 6 to 8 for the same effective charges
as given above. The experimental Q(2+) results [49] are
given in column 9. It can be seen that for the same effective
charge 0.5, the calculated values are close to the experi-
mental limit in case of 106Pd, while the agreement between
the calculated and experimental values is off for 106Cd.
The g(2+) values are calculated with gπl = 1.0, gνl = 0.0,
and gπs = gνs = 0.60. The calculated g(2+) is 0.370 nm and
0.466 nm for 106Cd and 106Pd, respectively. The theoreti-
cally calculated and experimentally observed g(2+) values

are in good agreement for 106Cd and slightly off by 0.047
nm for 106Pd from the upper limit given by Raghavan [49].
The overall agreement between the calculated and ob-
served electromagnetic properties of 106Cd and 106Pd sug-
gests that the PHFB wave functions generated by fixing
χpn to reproduce the yrast spectra are quite reliable.

The 2ν e+DBD modes of 106Cd for the 0+ → 0+

transition has been investigated by very few experimen-
tal groups, whereas some theoretical investigations have
been made using the QRPA and its extensions [13,21–26],
SU(4)στ [27] and SSDH [28]. In table 3, we have com-
piled all the available experimental [9–16] and theoretical
results [13,21–28] along with our calculated M2ν and cor-
responding half-life T 2ν

1/2. We have used phase space factors

G2ν = 4.991×10−26 y−1, 1.970 × 10−21 y−1 and 1.573 ×
10−20 y−1 for the 2ν β+β+, 2ν β+EC and 2ν ECEC
modes, respectively, as given by Doi et al. [5]. The phase
space integral has been evaluated for gA = 1.261 by Doi
et al. [5]. However, in heavy nuclei it is more justified to
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Table 3. Continued.

Decay mode Experiment Theory

Ref. T 2ν1/2 (y) Ref. Models |M2ν | T 2ν1/2 (y)

β+EC [15] > 1.2× 1018 Present PHFB 0.081 a) 77.925×10
21

[14] > 4.1×1020 b) 197.03×10
21

[13] > 0.66×1019∗ [26] SQRPA(l.b.) 0.61 a) 1.36×1021

[12] > 2.6× 1017 b) 3.44×1021

[9] > 5.7× 1017∗ SQRPA(s.b.) 0.57 a) 1.56×1021

b) 3.94×1021

[25] QRPA(WS) 0.168 a) 17.99×1021

b) 45.48×1021

QRPA(AWS) 0.718 a) 0.98×1021

b) 2.49×1021

[27] SU(4)στ 0.1947 a) 13.39×1021

b) 33.86×1021

[24] RQRPA(WS) 0.550 a) 1.68×1021

b) 4.24×1021

[24] RQRPA(AWS) 0.560 a) 1.62×1021

b) 4.09×1021

[13] QRPA(WS) 0.840 a) 0.72×1021

b) 1.82×1021

QRPA(AWS) 0.780 a) 0.83×1021

b) 2.11×1021

[23] QRPA 0.352 a) 4.1×1021

b) 10.4×1021

[22] QRPA(WS) 0.493–0.660 a) (2.09− 1.16)× 1021

b) (5.28− 2.95)× 1021

ECEC [15] > 5.8× 1017 Present PHFB 0.081 a) 97.593×10
20

[16] > 1.0×1018 b) 246.76×10
20

[11] > 5.8×1017 [26] SQRPA(l.b.) 0.61 a) 2.6×1020

b) 6.57×1020

SQRPA(s.b.) 0.57 a) 1.96×1020

b) 4.96×1020

[25] QRPA(WS) 0.168 a) 22.52×1020

b) 56.95×1020

QRPA(AWS) 0.718 a) 1.23×1020

b) 3.12×1020

[28] SSDH(Theo) 0.280 a) 8.11×1020

b) 20.50×1020

SSDH(Exp) 0.170 a) 22.00×1020

b) 55.62×1020

[27] SU(4)στ 0.1947 a) 16.77×1020

b) 42.40×1020

[24] RQRPA(WS) 0.550 a) 2.10×1020

b) 5.31×1020

[24] RQRPA(AWS) 0.560 a) 2.03×1020

b) 5.13×1020

[13] QRPA(WS) 0.840 a) 0.90×1020

b) 2.28×1020

QRPA(AWS) 0.780 a) 1.05×1020

b) 2.64×1020

[23] QRPA 0.270 a) 8.7×1020

b) 22.1×1020

[22] QRPA(WS) 0.493–0.660 a) (2.62− 1.46)× 1020

b) (6.61− 3.69)× 1020

* and ** denote the half-life limit for the 0ν + 2ν and 0ν + 2ν + 0νM modes, respectively.
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Table 4. Effect of the variation in χqq on
〈

Q2
0

〉

and M2ν .

χqq
106Cd 106Pd |M2ν |

〈

Q2
0

〉

π

〈

Q2
0

〉

ν

〈

Q2
0

〉 〈

Q2
0

〉

π

〈

Q2
0

〉

ν

〈

Q2
0

〉

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.1689
0.05 −0.0025 0.0039 0.0015 −0.0008 0.0057 0.0048 0.1709
0.20 −0.0087 0.0169 0.0082 0.1067 0.2100 0.3168 0.1636
0.40 −0.0100 0.0442 0.0342 0.0099 0.0701 0.0800 0.1624
0.60 0.0218 0.1261 0.1479 0.0483 0.1617 0.2100 0.1655
0.70 0.0683 0.2193 0.2876 0.0892 0.2455 0.3347 0.1682
0.80 0.1416 0.3594 0.5010 0.4521 0.8958 1.3479 0.1713
0.85 0.2227 0.5053 0.7280 11.2116 18.4734 29.6850 0.1432
0.90 11.63 20.0514 31.6814 15.534 25.0116 40.0650 0.1218
0.95 14.9910 26.1956 41.1866 17.5444 29.7372 47.2816 0.0935
1.00 17.4655 29.9152 47.3807 19.2454 33.1840 52.4295 0.0807
1.05 22.3626 34.0684 56.4230 20.4735 35.9085 56.3820 0.0831
1.15 31.6509 38.4407 70.0915 22.9707 39.9774 62.9481 0.0638
1.20 33.9053 39.6519 73.5572 24.8922 41.7666 66.6589 0.0417

use the nuclear-matter value of gA around 1.0. Hence, the
theoretical T 2ν

1/2 are calculated for gA = 1.0 and 1.261. We

have presented only the theoretical T 2ν
1/2 for those models

for which no direct or indirect information about M2ν or
G2ν is available to us.

We have evaluated the NTMEs M2ν as well as
half-lives T 2ν

1/2 using both the summation method [36]

and closure approximation [3] and compared them. In
the summation method, the calculated NTME M2ν is
0.081. The corresponding half-lives of the 2ν β+β+, 2ν
β+EC and 2ν ECEC modes are 7.78×1027 (3.08×1027) y,
1.97×1023 (7.79×1022) y and 2.47×1022 (9.76×1021) y for
gA = 1.0 (1.261), respectively. We use the following pre-
scription to evaluate the energy denominator Ed for 2ν
e+DBD modes in the closure approximation.

Ed = Ed(β
−β−)−W0 , (27)

where Ed(β
−β−) is the energy denominator for the 2ν

β−β− mode. The Ed(β
−β−) is given by [3]

Ed(β
−β−) = 1.12A1/2 . (28)

The value of the closure energy Ed is equal to 9.7733 MeV.
The calculated NTME M2ν in closure approximation
is found to be 0.119. The half-lives of the 2ν β+β+,
2ν β+EC and 2ν ECEC modes are 3.58×1027 (1.42×1027)
y, 9.08×1022 (3.59×1022) y and 1.14×1022 (4.50×1021) y
for gA = 1.0 (1.261), respectively. The ratio of NTMEs
M2ν in the closure approximation and summation method
is 2.16. In the calculation of half-lives T 2ν

1/2, there is an ad-

ditional contribution due to g4A, which varies from unity
to 2.53. Hence, the difference in M2ν in the closure ap-
proximation and summation method can be compensated
by the renormalization of gA. It is clear from the above
discussions that the difference in the results of the summa-
tion method and closure approximation does not manifest
so far, as the calculation of half-lives T 2ν

1/2 is concerned,

due to uncertainty in gA as well as unavailability of ex-
perimentally observed half-lives.

In column 3 of table 3, we have presented the experi-
mentally observed limits on half-lives T 2ν

1/2. In comparison

to the theoretically predicted T 2ν
1/2, the present experimen-

tal limits for the 0+ → 0+ transition of 106Cd are smaller
by a factor of 105–7 in the case of the 2ν β+β+ mode but
are quite close for the 2ν β+EC and 2ν ECEC modes. The
half-life T 2ν

1/2 calculated in the PHFB model using the sum-

mation method differs from all the existing calculations.
The presently calculated NTME M2ν is smaller than the
recently given results in the QRPA(WS) model of Suhonen
and Civitarese [25] by a factor of 2 approximately for all
the three modes. The theoretical M2ν values of the PHFB
model and SU(4)στ [27] again differ by a factor of 2 ap-
proximately for the 2ν β+EC and 2ν ECEC modes. On
the other hand, the M2ν calculated in our PHFB model is
smaller than the values of Hirsch et al. [23] by a factor of
3 approximately in the case of the 2ν β+β+ and 2ν ECEC
modes, while for the 2ν β+EC mode the results differ by a
factor of 4 approximately. All the rest of the calculations
predict NTMEs which are larger than our predicted M2ν

approximately by a factor of 7 [22,24] to 10 [13].
We have studied the role of deformation on

〈

Q2
0

〉

and
M2ν vis-à-vis the variation of the strength of the pn part
of the QQ interaction χqq. The results are tabulated in
table 4.

〈

Q2
0

〉

of 106Cd and 106Pd remain almost constant
as χqq is varied from 0.0 to 0.80. M2ν also remains almost
constant as χqq is changed from 0.0 to 0.80. As χqq is fur-
ther changed from 0.80 to 1.20,

〈

Q2
0

〉

increases while M2ν

decreases to 0.0417 having a fluctuation at 1.05. To quan-
tify the effect of deformation onM2ν , we define a quantity
D2ν as the ratio ofM2ν at zero deformation (χqq = 0) and
full deformation (χqq = 1). D2ν is given by

D2ν =
M2ν(χqq = 0)

M2ν(χqq = 1)
. (29)

The value of D2ν is 2.09, which suggests that M2ν is
quenched by a factor of approximately 2 due to defor-
mation effects.
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It is evident from the above discussions that it is dif-
ficult to establish the validity of different nuclear models
presently employed to study 2ν e+DBD due to limiting
values in experimental results as well as uncertainty in
gA. Further work is necessary both in the experimental as
well as the theoretical front to judge the relative applica-
bility, success and failure of various models used so far for
the study of 2ν e+DBD processes before they can have
better predictive power for the 0ν e+DBD modes.

4 Conclusions

We have tested the quality of HFB wave functions by com-
paring the theoretically calculated results for a number
of spectroscopic properties namely yrast spectra, reduced
B(E2:0+ → 2+) transition probabilities, quadrupole mo-
ments Q(2+) and g-factors g(2+) of 106Cd and 106Pd with
the available experimental data. The same HFB wave
functions are employed to calculate the NTME M2ν and
the half-life T 2ν

1/2 of 106Cd for the 2ν β+β+, 2ν β+EC

and 2ν ECEC modes. The values of T 2ν
1/2 calculated in

the PHFB model with the summation method are larger
than the previous calculations. The presently calculated
NTME M2ν is smaller than the recently given results in
the QRPA(WS) model of Suhonen and Civitarese [25] by
a factor of 2 approximately for all the three modes. The
proton-neutron part of the PPQQ interaction that reflects
the deformations of the intrinsic ground state, plays an
important role in the quenching of M2ν by a factor of 2
approximately in this particular case. The calculated 2ν
e+DBD decay half-lives are very close to the experimen-
tally observable limits for the 2ν β+EC and 2ν ECEC
modes. It is hoped that the calculated T 2ν

1/2, which is of

the order of 1021–23 y can be reached experimentally for
the 2ν β+EC mode in the near future [14].
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